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One of several approaches can be taken to determine the stress-strain state of thin 
shells with large elastic displacements. The author of [I] obtained relations of a shell 
theory with small strains and arbitrary displacements. An analysis was also made of basic 
methods of simplifying problems with finite displacements. Variants of the nonlinear 
theory of shells in a quadratic approximation were proposed in [2, 3], while in [4] equa- 
tions of thin shells were derived by isolating rigid rotation in the displacements. In 
[5], the basic assumptions of the theory of thin shells were generalized to and refined for 
the case of large strains accompanied by a change in the thickness of the shell. The 
presence of arbitrary displacements precluded the customary use of simplifying assumptions 
regarding the smallness not only of the strains, but also of certain terms associated with 
the displacements or rotations. 

The theory constructed in [I] was the starting point for many researchers in the 
field of the nonlinear deformation of shells. The approach taken in [i] to deriving the 
strain relations for arbitrary rotations and small strains is based on examining general 
equations of the nonlinear theory of elasticity in orthotropic curvilinear coordinates. 
The Kirchhoff-Love geometric hypotheses were used to obtain three nonlinear algebraic 
equations relative to the direction cosines O, ~, (i + X) of a normal to the deformed mid- 
dle surface of the shell: 

,~  + ,~ + (t + ~)~ = t, (1 + ~ + ~ + ~(1 + ~ )  = o, 
(0.1) 

(~ + z ~  + ~ + ~(~ + ~)  = o, 

where eij (i, j = I, 2) are linear components of the strains of the middle surface; --~s 
(i = i, 2) are direction cosines of the normal to the deformed surface in a linear approxi- 

mation. 
With the use of the assumption that the strains could be ignored compared to unity, 

an approximate solution was given for system (0.I) in the form ~ = --e13(i + e~) + e~3e12,~ = --e23(I + 
~1)~-e13e21~ = ell + ~2 + el~22~e12e21- The authors of [6, 7] expressed doubts as to the cor- 
rectness of this step in the derivation of the strain relations and instead proposed that 
the main criterion for evaluating the relations in [I] be the possibility of reducing them 
to linear expressions [8] with small displacements. In order to satisfy this criterion, in 
[6] the function X was expanded into a series in powers of the displacement of the middle 
surface and their derivatives. Here, terms of the second order of smallness were retained 
in the series. As was noted in [7], such assumptions are invalid in present of arbitrary 
displacements. Addressing this case, the authors of [7] supplemented the strain relations 
with small terms of the order of ~ij/Rj (Rj are the principal radii of curvature and ~ij are 
strains of the middle surface). As was noted in [8, p. 27], "Certain authors tend to 
ascribe fundamental importance to the given circumstance... However, the refinement 
achieved here does not exceed the error of the original assumptions of the shell theory." 

It can be concluded from an analysis of the above-examined studies that in regard to 
the derivation of variants of strain relations on the basis of the approach in [I], the 
question of their validity in the region of arbitrary displacements needs to be more fully 

investigated. 
The selection of a criterion for evaluating strain relations is of both theoretical 

and practical importance, in connection with the possibilities of numerically solving prob- 
lems of shell bending with arbitrary displacements. It should be noted that that the need 
for such criteria arises in evaluations of approximate relations. When adequate measures 
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of strain are employed for a certain continuum (such as in [4, 9, i0]), these relations by 
definition satisfy physically substantiated criteria. Since it is difficult to make prac- 
tical use of the most general formulations, the approximate relations most commonly used in 
shell theory have certain established regions of applicability. However, even if a study 
is based on an initially adequate relation, certain obligatory criteria may be violated in 
the course of establishing various approximate expressions. 

In the present study, we use the approach in [I] to derive strain relations for thin 
shells in vector form~ These relations are then analyzed by means of criteria expressing 
the absence of strains and curvatures with arbitrary displacements of the shell as a rigid 
body. Criteria of the absence of mutual displacements of points of the shell are formu- 
lated in terms of vectors connected with the surface ("frozen vectors"). It is shown that 
in the principal approximation the strain relations in [I] should be supplemented by a few 
additional terms. A local approximation of the relations which is performed permits their 
use in numerical algorithms. 

i. In accordance with [I], the expressions for the strains ai3 and curvatures ~i3 of 
the middle surface have the form 

• = (I/2)(kij + kji + ki~Tj~ + k j ~ )  

(i, j = I, 2, and summation is carried out over m = I, 2, 3). The components ai3 
form tensors of the strains and curvatures; ~12 and ~Iz differ from the corresponding quan- 
tities in [i] by the multiplier 1/2. The remaining notation is the same as in [i]. 

To perform a geometric analysis, we write (1.1-1.2) in vector form. We introduce the 
vectors ri, ni (ri, ni) by means of the relations 

r i = T i  r,i, r i = ~  r,i, h i =  ~ n ~ ,  n~=-~in ,+ (1 .3)  

Here,  r ,  n (r, n) a re  the  p o s i t i o n  v e c t o r  a n d n o r m a l  v e c t o r  o f  the  undeformed (deformed) 
middle surface; A i are the Lame constants; n ~i r I ~ r2; the subscripts after the co~as 
denote derivatives with respect to the coordinates ~i (i = i, 2). 

The vectors ri, ni can be written directly in terms of ei3, kij: 

r~ = ri + eimrm, ni = ni + kimrm (1.4) 

( i . 1 )  

(1.2) 

and ~i3 

(i = I, 2, and summation is carried out over m = I, 2, 3; r S ~ n is the identity notation 
for the normal vector to the original surface). 

Having calculated the following scalar products, we obtain 

rirj -- rir j ~ eij + eji + eimejm; (1.5) 

- + &j - = k .  + + k,m m + ( 1 . 6 )  

where we have used the relation rir 3 = 6i3 (61j is the Kronecker symbol). 
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Comparing (1.5-1.6) with (i.i-1.2), we find the vector form of ~i3, ~i3: 

sij = (l/2)(r~r: - -  rirj); ( 1 . 7 )  

~ij : (t/2)(n~r] -~ n]r~ - -  nirj  - -  njri). ( 1 . 8 )  

In accordance with [i], for ~he strains ~i3 in a layer located the distance z from the 
middle surface we have e~J ~ eu-~-z~i] ~ z2Vu or, in vector form, 

el] : (1/2)[(Ri - -  R~)ry + (Rj - -  Rj)ri + (R~ - -  Ri)(l~j - -  Rj)1; 
. . . .  (1.9) 

fi~ = r~ q- z~,, R~ = r, + z . , .  ( 1 . 1 0 )  

Since the abbreviated relations eij : e~j-~Z• ~ are usually used for thin shells, we will 
henceforth ignore the values of v• [I].* 

2. We will assume that a and b are vectors continuously connected with the Surface 
("frozen in the surface"). With the displacement of the surface of the shell as a rigid 
body without strains and curvatures, the vectors a and b also undergo a certain displace- 
ment in space and assume the new positions ia and b However, there is no accompanying 
change in the position of the vectors relative to each other in this case; thus, there 
remains the scalar product 

ab : ab, ( 2 . 1 )  

I n  t h e  s p e c i a l  c a s e  b ffi a ,  t h e  p r o p e r t y  o f  c o n s e r v a t i o n  o f  t h e  l e n g t h  o f  t h e  v e c t o r  ~2 : a ~ 
f o l l o w s  f r o m  ( 2 . 1 ) .  

Among t h e  v e c t o r s  t h a t  a r e  c o n t i n u o u s l y  c o n n e c t e d  w i t h  t h e  t h e  s u r f a c e  a r e  d e r i v a -  
t i v e s  ( o f  a n y  o r d e r )  o f  t h e  p o s i t i o n - v e c t o r  w i t h  r e s p e c t  t o  t h e  c u r v i l i n e a r  c o o r d i n a t e s  and  
t h e i r  l i n e a r  c o m b i n a t i o n s :  r i ,  n i ,  Ri,  e t c .  The " f r o z e n "  s t a t e  o f  t h e s e  v e c t o r s  r e s u l t s  i n  
c o n s e r v a t i o n  o f  t h e  c o e f f i c i e n t s  o f  t h e  f i r s t  and  s e c o n d  q u a d r a t i c  f o r m s  o f  t h e  s u r f a c e  
w i t h  r i g i d - b o d y  d i s p l a c e m e n t s ,  s i n c e  t h e s e  c o e f f i c i e n t s  a r e  e x p r e s s e d  i n  t e r m s  o f  t h e  f i r s t  
and  s e c o n d  d e r i v a t i v e s  o f  t h e  p o s i t i o n - v e c t o r .  I t  s h o u l d  be  n o t e d  t h a t  t h e  p o s i t i o n - v e c t o r  
i t s e l f  i s  n o t  among t h e  f r o z e n  v e c t o r s .  T h u s ,  i n  a c c o r d a n c e  w i t h  ( 2 . 1 ) ,  w i t h  r i g i d - b o d y  
d i s p l a c e m e n t s  we h a v e  

rirj : r~rj, n~rj : :  n~r:, R~Rj = RiRj. ( 2 . 2 )  

Here, (1.7-1.9) show that ~j = 0, • =: (~/2)[n~(rj --_~) + nj(r~ --r~)], e~j : (~/2)[(R~ --R~)(rj --R;)+ 
( R j -  R~)(r~ -- R~)1. 

It should be noted that that Eq. (1.9) is the determining equation in the given case, 
since the formulas for ~i~ are derived from (1.9) by means of (i.i0) and are found as coef- 
ficients with equal powers of z [I]. In the calculation of the strains at the distance z 
from the middle surface, the position-vector and its derivatives in the original position 
should also be considered independent of z. As a result, by replacing r~ by Ri(z) in (1.9) 
in accordance with (I.I0) and by reducing similar terms, we arrive at the expression 

~ j  = (~/2)(R~R: - -  R~Rj), ( 2 . 3 )  

which is consistent with the definition of the components of the Green strain tensor re- 
ferred to a metric surface. 

In accordance with (2.2), in the presence of rigid-body displacements we have ~i3 = 0. 
Inserting (i.i0) into (2.3) and grouping terms with the first powers of z, we find 

• : (t/2)(n~ry -~ njr~ - -  nirj  - -  njri). ( 2 . 4 )  

Using Eqs. (2.2), we obtain ~• ffi 0. Substitution of (1.4) into (2.4) leads to the fol- 
lowing relations (with summation over m = I, 2, 3) 

i ( k~Ssm k ~ i ~  I - ~ ~j~). ( 2 . 5 )  • = -7- k~: + k:~ + + + ~-j e~j + ~ -  

*It should be noted that the contribution of the terms with zSvij may be significant in the 
case of severe local bending in the plastic region. 

942 



Here, R~ are the principal radii of curvature obtained with the expansion of the expression 
nir 3 = (I/Rs Let us evaluate the additional terms in (2.5). Since [in accordance with 
(1.4)] the sum 613 + ei3 coincides to within terms of the order of the strains with the 
direction cosines of the vector r~,'then for any displacements we have 

(2.6) 

With i = j we find from (2.6) that --2/eli~0 while at i ~ j we have--i~eij~. The 
boundary values of these inequalities may change by an amount which is of the order of 
magnitude of the strains, Expressions (2.5) differ from the strain relations in [6, 7]. 

Let us examine (2.5) in the ease of cylindrical bending of an inextensible (ei3 = 0) 
curved strip of radius RI(~I). The quantity ~ will be nontrivial. As the parameter ~i, 
we take the length of an arc of the middle~surfaceA in the undeformed_ ~ state, when A~ =~I. 
Of &~3' ki3, n~ quantities will be el I ~ ~,1 ~/~1, ela ~ w,t--~/R~, I k~, ~ ---e~a a + 
~/R~, k~a = e~a-~-~a/R~. Here, 6 and w are the longitudinal and transverse displacements. 
The subscript after the comma denotes a derivative with respect to az. With allowance for 
elz = 0, expression (2.5) for ~ takes the form • =--(I + e1~)e~aa ~ e~ae~l,Z, which agrees 
with the exact formula for the change in the curvature of a plane curve. 

3. Let us examine the possibility of using the vector analog of Eq. (i.I) and (1.5): 

e i j =  ( l / 2 ) ( r , r j  - -  r , r j ) ,  •  = ( 1 / 2 ) ( n i r j  -4- n j r i  - -  n i t1  - -  n~ri) .  (3 . i )  

In the neighborhood of the regular point O of an arbitrary surface, we have the fol- 
lowing approximation relations [ii] (with the origin of the coordinates ~I, ~z placed at 
point O) 

(rP(~l, ~2) is the position vector on the point tangent to the surface at the given point; 
np is a normal to the plane; ~(~I, az) is the function giving the form of the surface). 
Using a similar approximation for the deformed surface [12] and allowing for (1.3), we 
represent (3.1) in the form 

A ( ( 3 . 2 )  e i ~ ; -  012)  - P ~  v p " 

,•  ~ ( i / 2 )  ( n  .~r~ + n jr.~ - -  n,~rV~ - -  n , ; r ,~) .  ( 3 . 3 )  

The terms omitted from (3.2-3.3) are of the order O(= z) [12], where'=, ~_(~@_~)i/~/ is the 
radius of the neighborhood of the point of tangeney. Equation (3.3) can be written in the 
following equivalent form with allowance for the equality r E. = 0:i 

•  = (1/2) (@~,j + Oj,O, O = n r.~ - -  nr~',~, ( 3 . 4 )  

which makes it similar in meaning to the analogous expressions in the linear theory of 
plates and shells. However, here we calculate 8 i from a nonlinear formula. It can also be 
shown [12] that relations (3.2), (3.4) are invariant under a transformation of the coor- 
dinates ~I, ~ Within the present context, the tangent plane to the initial and deformed 
surfaces rP,i is a "frozen vector." This means that the rigid-body displacements 

- " - p  -pr ' - o, nT ,=nr , O. r ~ r j = r , i  ,j, e i j =  , : 

Thus, (3.2-3.4) can be used as measures of strains and curvatures with arbitrary displace- 
ments. 

The approximate deformation relations are convenient to use in direct numerical meth- 
ods, such as the finite-element method. Here, information on the radius-vector and normal 
vector at a finite number of points is used as the initial geometric characteristics. 

Figure i shows the solution of the problem of the symmetric deformation of a half- 
ring referred to the coordinates xl, x~. The ring is of the radius R = I and is loaded by 
two concentrated forces with the value p+. Figure 2 shows the dependence of the load p = 
2p+RZ/D on the displacement u = u+/(2R) (u + is the mutual displacement of the points of 
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application of the forces and D is bending stiffness). The dashed line shows the linear- 
ized dependence. The solution was obtained by the finite-element method on the basis of 
(3.2), (3.4) for ~11, ~ii. The nonlinear deformation characteristic and the equilibrium 
modes agree well with the exact solution found by the method of elliptic integrals [13]. 

The authors of [12, 16, 17] determined the strain state of shells by a method based 
on relations (3.2), (3.4), canonical energy forms [14], and variational formulas of vector 
algebra [15]. 
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